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Abstract
An interatomic potential has been developed to describe interactions in silicon, carbon and
silicon carbide, based on the environment-dependent interatomic potential (EDIP) (Bazant et al
1997 Phys. Rev. B 56 8542). The functional form of the original EDIP has been generalized and
two sets of parameters have been proposed. Tests with these two potentials have been
performed for many properties of SiC, including bulk properties, high-pressure phases, point
and extended defects, and amorphous structures. One parameter set allows us to keep the
original EDIP formulation for silicon, and is shown to be well suited for modelling
irradiation-induced effects in silicon carbide, with a very good description of point defects and
of the disordered phase. The other set, including a new parametrization for silicon, has been
shown to be efficient for modelling point and extended defects, as well as high-pressure phases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Silicon carbide (SiC) is a commonly studied semiconduct-
or because of its potential industrial and technological
applications in electronics or in the nuclear environment [1, 2].
Besides its high temperature semiconductivity, it has excellent
thermal and mechanical properties such as extreme hardness
or large high temperature thermal conductivity. It also has
excellent resistance to chemicals [3].

This material has been extensively studied both experime-
ntally and theoretically. In the latter case, many calculations
were based on atomistic simulations, such as molecular
dynamics or Monte Carlo calculations, to study, for
instance, dislocations, grain boundaries and interfaces, liquid,
disordered or amorphous phases, diffusion and growth

processes [4–8]. With these methods, simulations normally
involve a large number of atoms and the largest timescale
possible. The reliability of these simulations depends
for a large part on the quality of the empirical potential
used to describe interatomic forces between atoms. In
interatomic potentials, the quantum description of the binding
is implicitly included in an analytic functional through
empirical parameters. The quality of a potential relies
obviously on both the functional form and the database used
for fitting the parameters. In the case of covalent materials, it is
difficult to properly model the oriented and localized nature of
the bonds, and situations involving the formation and rupture of
these bonds are usually not well described. In the past several
potentials have been specifically proposed for semiconductor
materials, the most famous ones being Stillinger–Weber [9],
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Tersoff [10] or Brenner [11] potentials, but none of them has
appeared to be really superior to the others.

Concerning silicon carbide, the most widely used
empirical potential is probably the bond order potential
developed by Tersoff [10] consisting of two- and three-
body terms. Several modified versions of Tersoff and
Brenner potentials optimized for specific applications have
also been published by Devanathan et al [12] and Gao et al
[13]. Although relatively accurate in specific situations,
their transferability to other configurations remains limited.
Recently, an empirical potential based on the Brenner potential
has been proposed by Erhart and Albe [14]. This potential
appeared successfully to reproduce a wide range of silicon
carbide properties, especially the ones involved in phase
transitions, but still properties such as formation energies of
point defects are far from being accurate in comparison to first-
principles calculations.

In this study, we have developed a new empirical potential
for silicon carbide based on EDIP (environment-dependent
interatomic potential), initially provided for bulk silicon by
Bazant et al [15–18] in order to provide a better description
of point and extended defects. A modified version of EDIP
for carbon-based materials has been proposed by Marks [19],
but the modifications of the functional form for describing π -
bonding make its use inadequate for our purpose. Here we
generalize the original EDIP to silicon carbide and propose two
different potentials: one keeping the original parametrization
for bulk silicon and another one with a fully new set of
parameters. After a description of EDIP functional form
and its generalization to SiC, the results of calculations
performed with the new potential are reported. Considered
properties include bulk phases and elasticity constants, and
point and extended defects for silicon, diamond and silicon
carbide. Finally, amorphous silicon carbide is investigated and
compared to previous results.

2. Functional form

2.1. Original form of EDIP

In the original EDIP for silicon, developed by Bazant et al
[16–18], the total energy of an atomic configuration { �Ri}
is expressed as a sum of individual atomic energies, which
contain two-body and three-body terms:

Ei =
∑

j �=i

V2(ri j , Zi ) +
∑

j �=i

∑

k �=i,k>i

V3(�ri j , �rik , Zi). (1)

V2(ri j , Zi) is an interaction between atoms i and j representing
pairwise bonds and V3(�ri j , �rik, Zi ) is an interaction between
atoms i , j and k centred on atom i representing angular forces.
These two types of interaction depend on the local environment
of atom i thanks to an effective coordination number, defined
by

Zi =
∑

m �=i

f (rim), (2)

where f (rim) is a cutoff function that measures the
contribution of neighbour m to the coordination of atom i
according to their separation rim . This function is unitary for

r < c, decreases smoothly toward 0 when rim increases, and is
equal to 0 for r > a:

f (r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, r < c

exp

(
α

1 − x−3

)
, c < r < a

0, r > a,

(3)

where x = (r −c)/(a−c). A neighbour of atom i at a distance
r < c is considered a full neighbour, while further neighbours
contribute partially to Z . The cutoff radii c and a are chosen to
reproduce the coordination of the diamond lattice (Zi ).

The two-body term includes repulsive and attractive
interactions:

V2(ri j , Zi) = A

[(
B

ri j

)ρ

− p(Zi)

]
exp

(
σ

ri j − a

)
, (4)

and vanishes at the cutoff radius a with all derivatives being
continuous. It is equivalent to the two-body term in the
Stillinger–Weber potential for small distortions of the diamond
structure. In EDIP, the bond strength is modified by the
local environment. This dependence has been motivated
by theoretical calculations [15, 20], which have shown
the weakening of the attractive interaction p(Z) and the
lengthening of bonds for increasing coordination. This feature
can be accurately reproduced with a Gaussian function [16]:

p(Z) = exp(−β Z 2). (5)

The three-body term in (1) contains radial and angular
factors:

V3(�ri j , �rik, Zi ) = g(ri j)g(rik)h(li jk, Zi), (6)

where lik j = cos θi jk = �ri j · �rik/ri jrik . The Stillinger–Weber
form has been chosen for the radial function:

g(r) = exp

(
γ

r − a

)
, (7)

which goes smoothly to zero at the cutoff distance a.
The angular function h(l, Z) strongly depends on the local
coordination through two functions τ (Z) and ω(Z), which
control the equilibrium angle and the force of the interaction,
respectively. The general shape of this function has been
postulated following theoretical considerations [16]:

h(l, Z) = H

(
l + τ (Z)

ω(Z)

)
, (8)

where H (x) is a function satisfying the following constraints:
H (x) > 0, H (0) = 0, H ′(0) = 0 and H ′′(0) > 0. Bazant et al
have finally proposed the angular function:

h(l, Z) = λ[(1 − exp(−Q(Z)(l + τ (Z))2))

+ ηQ(Z)(l + τ (Z))2], (9)

where ω(Z)−2 = Q(Z) = Q0 exp(−μZ) controls the force
of the angular interactions. The angular term weakens with
increasing coordination, allowing us to represent the transition
between covalent and metallic bonds. The first contribution to
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Table 1. Average of the cross-parameters. In the table, g, a and wa stand for geometric, arithmetic and weighted arithmetic means,
respectively.

Two-body parameters Three-body parameters

a: pi j = (pi + pj )/2 ρ, β, α wa: pi jk = (2pi + pj + pk)/4 λ, η, Q0, μ
g: pi j = √

pi p j A, B, a, c, σ, γ

this term, H1(x) ∝ 1 − exp(−x2), is symmetric around the
minimum and weak for small angles, and has been used by
Mistriotis et al [21]. Here, it contains a dependence on the
local environment. The second contribution, H2(x) ∝ x2, is
introduced to obtain a more asymmetrical shape, as suggested
by tight-binding models and exact inversion of ab initio
cohesive energy curves [15]. It yields stronger interactions for
small angles.

The function τ (Z) = l0(Z) = − cos θ0(Z) controls the
equilibrium angle θ0(Z) of the three-body term according to
the coordination. This specificity of EDIP allows us to model
the hybridization of atoms in different environments. If a Si
atom is threefold- or fourfold-coordinated, its bonds would
prefer to be hybridized sp2 or sp3 with equilibrium angles
θ0(Z = 3) = 120◦ and θ0(Z = 4) = 109.471◦, respectively.
Twofold and sixfold coordinations are also possible, but at
the expense of a higher cost in energy. The function τ (Z)

has been built to smoothly interpolate between these points
(Z = 2, 3, 4, 6) with the following form:

τ (Z) = u1 + u2(u3 exp(−u4 Z) − exp(−2u4 Z)) (10)

with u1 = −0.165 799, u2 = 32.557, u3 = 0.286 198 and
u4 = 0.66.

EDIP potential for bulk silicon has 13 adjustable
parameters. These parameters have been fitted by Bazant et al
using a database including experimental and ab initio results,
such as bulk properties and formation energies of point and
extended defects [18].

2.2. Generalization of EDIP to silicon carbide

Two potentials (A and B) have been developed, one keeping the
original parametrization of EDIP for bulk silicon and the other
allowing all parameters to vary during the fitting procedure.

2.2.1. Potential A. The general principle to obtain potential
A is to keep the original parametrization of the original EDIP
potential for bulk silicon, as it has already been tested and
applied in numerous studies. Only parameters for carbon
have been optimized, and the cross-parameters for interactions
involving Si and C atoms are simply arithmetic or geometric
means of the other parameters (see table 1). The parameters
λ, η, Q0 and μ of the angular function h(l, Z) are obtained
by a considered arithmetic mean giving a higher weight to the
central atom.

In the original EDIP, the external cutoff radius is about
3.12 Å, which corresponds roughly to the second-neighbour
distance (3.08 Å) in SiC. This leads to an unphysical behaviour
(discontinuity) in the cohesive energy curve close to the
equilibrium distance of SiC. Indeed each Si atom feels the

interaction from its first C neighbour but also from its second
Si neighbour, leading to an effective coordination larger than
the expected fourfold coordination. To solve this issue, a
corrective term has been introduced in the Si–Si interactions
when the central atom is surrounded by Si and C atoms. This
function reduces the external cutoff radius by a distance δ,
when the partial coordination of the central atom ZC−Si is not
zero:

�(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, r < c

exp

(
α

1 − x−3

)
, c < r < a − δ

0, r > a − δ,

(11)

where x = (r − c)/(a − δ − c). This correction is applied
on the coordination function, the pairwise function V2 and the
angular function V3:

f (r) = exp

(
α

1 − x−3

)
�(r) (12)

V2(ri j , Zi) = A

[(
B

ri j

)ρ

− p(Zi)

]
exp

(
σ

ri j − a

)
�(ri j),

(13)
V3(�ri j , �rik, Zi ) = g(ri j)�(ri j)g(rik)�(rik)h(li jk, Zi), (14)

where δ has been fixed to 0.3 Å. This value allows us to
avoid the above-described discontinuity around the equilibrium
distance while keeping the original behaviour of the Si–Si
interactions.

2.2.2. Potential B. In potential B, almost all the parameters
have been optimized, allowing a greater flexibility during
the fitting procedure, and only the parameters of the angular
function h(l, Z) are obtained from a weighted arithmetic
average of the pure element parameters. As a consequence,
a new parametrization for silicon has been obtained. In this
case, since the new external cutoff radius for Si–Si interaction
is below 2.95 Å, there is no need to introduce a corrective
function.

2.3. Fitting procedure

Our EDIP potentials have been parametrized in two successive
steps. First, a simulated annealing algorithm [22, 23] has
been used. It is a stochastic method allowing us to explore
a multivariable space defined by an objective function, which
in our case includes a weighted least-squares term and a
penalty term. The algorithm allows a local minimum to
escape when optimizing a set of parameters. In a second step,
the simplex algorithm of Nelder and Mead [24], suitable for
nonlinear optimization, is used to refine the solution obtained.
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Table 2. Parameters of the potentials. In potential A, Si parameters remain the same as in the original EDIP potential for bulk silicon [18]. In
the table, g, a and wa stand for geometric, arithmetic and weighted arithmetic means, respectively. A corrective function is introduced in
potential A (δ = 0.3 Å), see the text for details.

Potential A Potential B

Si SiC C Si SiC C

f (r)

a (Å) 3.121 382 g 2.291 805 2.941 586 2.534 972 2.212 263
c (Å) 2.560 910 g 1.569 857 2.540 193 1.973 974 1.741 598
α 3.108 385 a 1.126 809 3.066 580 2.507 738 1.962 090

V2

A (eV) 7.982 173 g 11.677 335 5.488 043 7.535 967 10.222 599
B (Å) 1.507 546 g 0.961 202 1.446 435 1.177 019 0.959 814
ρ 1.208 520 a 2.877 953 1.343 679 2.061 835 2.827 634
β 0.007 097 a 0.025 596 0.008 593 0.015 347 0.025 661
σ (Å) 0.577 411 g 0.710 345 0.298 443 0.423 863 0.536 561

V3

γ (Å) 1.124 794 g 1.225 825 1.135 256 1.191 567 1.084 183
λ (eV) 1.453 311 wa 1.780 018 2.417 497 wa 3.633 621
η 0.252 324 wa 0.811 587 0.589 390 wa 0.275 605
Q0 312.134 135 wa 417.547 683 208.924 548 wa 289.305 617
μ 0.696 633 wa 0.612 215 0.629 131 wa 0.594236

The database for the fitting procedure includes experimental
data such as cohesive energies, lattice parameters and elastic
constants of Si, C and SiC, which ensure that the potentials
will be able to accurately reproduce the structural and elastic
properties of these materials. Moreover, we have biased the
parametrization in order to improve the description of defects
in SiC: the formation energies of several defects, i.e. CTSi,
CC〈100〉 and SiSi〈110〉 interstitials, have been added into the
database. Note that we have also attempted to include the
SiTC interstitial, but it did not lead to a better description of
this specific defect configuration. The best sets of parameters
obtained for potentials A and B are given in table 2.

2.4. Bulk phases

2.4.1. Bulk silicon. Structural and elastic properties of
bulk silicon, computed with the molecular dynamics code
XMD [25], are reported in table 3. For the diamond phase,
results obtained with the parameter set A are obviously
identical to the original EDIP [18]. Overall, properties of
the diamond phase are well described with all interatomic
potentials. This is not so surprising since potential parameters
are usually fitted on these properties. We have also investigated
high-pressure and exotic silicon phases, for which a higher
coordination leads to an increasing metallic behaviour [26].
DFT calculations suggested that the differences in the cohesive
energies of the various phases are rather small and are therefore
very difficult to reproduce with classical potentials. The
new silicon parametrization of EDIP B gives a significant
improvement over EDIP A for these phases. For low energy
bulk structures, EDIP B provides a close agreement with
DFT data. For the high-pressure BC8 phase, a0 and �E
are found to be 6.67 Å and 0.130 eV with DFT [27], and
6.698 Å and 0.168 eV with EDIP B. For the β-tin phase,

both EDIP yield overestimated cohesive energies. Since
the EDIP lattice parameters are in agreement with the DFT
value, it is likely that the potential overestimates the transition
pressure between diamond and β-tin phases. Finally, for other
high energy phases, we found that structural parameters are
usually in agreement with reference data. However, cohesive
energies are often overestimated, especially with the original
parameter set A. The new parametrization B greatly improves
the description.

2.4.2. Bulk carbon. Carbon can be found naturally with
two different structures: diamond and graphite, which have
respectively sp3 and sp2 bonds. At room temperature, graphite
is thermodynamically more stable than diamond by less than
1 meV. Graphite sheets are held together by long-range van
der Waals interactions, a feature difficult to reproduce with
short-range classical potentials. The results reported here
have then been obtained by fixing the separation between the
sheets to the experimental value. As shown in table 4, EDIP
potentials reproduce reasonably well the cohesive energies of
both structures, the parameter set B yielding the graphitic
structure as slightly more stable than diamond. However,
like other potentials, the lattice parameter of graphite is
somewhat overestimated by EDIP potentials. The elastic
constants of the diamond phase are in good agreement with
DFT calculations, except for C44, which is underestimated.
Overall, there are very few differences between EDIP and
previous potentials regarding graphite and diamond properties,
except for the Brenner potential which poorly reproduces the
elastic constants of the diamond structure.

The EDIP potentials have also been used for modelling
several high energy phases, with coordination numbers up to
Z = 8. These results, shown in table 4, are compared to
those found by Furthmüller et al within DFT [31]. Globally
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Table 3. Structure and elastic properties of bulk silicon phases obtained with EDIP potentials, and compared to experiments [28], DFT-LDA
calculations [18, 27, 29, 30] and empirical calculations using Stillinger–Weber (SW) [9], Tersoff (T89) [10] and Erhart–Albe (EA05) [14]
potentials. Energies are given relative to the diamond phase.

Exp. DFT-LDA EDIP A EDIP B SW T89 EA05

Diamond (Z = 4)

a (Å) 5.43 5.430 5.425 5.431 5.432 5.429
Ec (eV) −4.65 −4.650 −4.647 −4.63 −4.63 −4.63
B (GPa) 99 99 101 108 98 99
C11 (GPa) 167 175 155 162 142 167
C12 (GPa) 65 65 75 82 75 67
C44 (GPa) 81 71 59 60 69 75
C0

44 (GPa) 112 112 111 117 119 105

BC8 (Z = 4)

a (Å) 6.67 6.689 6.698 6.591 6.644 6.625
�Ec (eV) 0.130 0.224 0.168 0.201 0.245 0.527

β-tin (Z = 6)

a (Å) 4.730 4.854 4.832 4.969 4.905 4.856
c/a 0.552 0.519 0.519 0.561 0.524 0.527
�Ec (eV) 0.210 0.603 0.576 0.213 0.327 0.412

SH (Z = 6)

a (Å) 2.639 2.875 2.785 2.833 2.699 2.659
c/a 0.94 0.857 0.883 0.918 0.967 0.965
�Ec (eV) 0.293 1.216 0.570 0.403 0.469 0.476

SC (Z = 6)

a (Å) 2.528 2.497 2.493 2.612 2.544 2.525
�Ec (eV) 0.348 0.521 0.544 0.293 0.318 0.397

BCC (Z = 8)

a (Å) 3.088 3.236 3.166 3.245 3.084 3.043
�Ec (eV) 0.525 1.601 0.889 0.300 0.432 0.503

FCC (Z = 8)

a (Å) 3.885 4.078 3.941 4.147 3.897 3.940
�Ec (eV) 0.566 1.773 0.688 0.423 0.761 0.587

the EDIP potentials yield a good structural description with
lattice parameters close to the ones calculated in DFT, potential
B being the best. Regarding stability, the EDIP potentials
tend to overestimate the cohesion energies for structures with
high coordinations (Z � 6). Nevertheless, the stability
order of these high energy phases remains coherent with DFT
calculations. The best agreement between DFT and potential
calculations of cohesive energies is obtained with the Erhart–
Albe potential, likely due to the inclusion of these energies in
the database used to fit the potential.

2.4.3. Bulk silicon carbide. The properties of several
common SiC polytypes (3C, 4H and 6H), as well as high
energy phases (B1 and B2), have been calculated with
the developed potentials. Table 5 shows experimental
data [32] as well as theoretical results obtained with DFT
calculations [34–36], EDIP A and B potentials, and other
empirical potentials for SiC (Erhart–Albe [14], Tersoff [10]
and Gao–Weber [13]). The lattice constant and cohesive
energy of the 3C cubic phase are well described by all
potentials. Elastic constants computed with both EDIP

potentials are in good agreement with experimental data,
especially with EDIP B. Nevertheless, the C44 constant is
underestimated. We observed a similar behaviour for the
diamond phase, which suggests it may be due to the EDIP
functional, and not the fitting procedure. Overall only the
Erhart–Albe potential gives a better description than EDIP
B. In contrast, the Gao–Weber potential leads to a poor
description of the elastic constants for the cubic phase.

The cohesive energies of the 3C, 4H and 6H polytypes
differ by a few meV [34–36], as they share the same local
tetrahedral environment. As EDIP potentials take into account
only first-neighbour interactions, they do not allow us to
distinguish between polytypes. Here, cohesive energy and
bond lengths remain strictly identical for all three polytypes in
potential calculations. We have computed the elastic constants
of the 4H polytype, which are found in very good agreement
with experimental values. Experimentally, it is established that
the cubic 3C phase transforms to a B1 structure (NaCl) above
100 GPa [37], even if the transition path is still a matter of
discussion [38]. Results obtained with EDIP potentials for
B1 (NaCl) and B2 (CsCl) structures are compared to DFT

5
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Table 4. Structure and elastic properties of bulk carbon. Results obtained using EDIP potentials are compared to experiments [3], DFT-LDA
calculations [31] and empirical calculations using Erhart and Albe (EA05), Brenner (B90) and Tersoff (T89) potentials [14]. Energies are
given relative to the graphite phase.

Exp. DFT-LDA EDIP A EDIP B EA05 B90 T89

Graphite (Z = 3)

a (Å) 2.46 2.440 2.570 2.558 2.555 2.513 2.530
Ec (eV) −7.374 −9.030 −7.382 −7.371 −7.374 −7.376 −7.396

Diamond (Z = 4)

a (Å) 3.567 3.528 3.535 3.561 3.566 3.558 3.566
�Ec (eV) 0.0004 −0.0001 0.0008 0.0009 0.0524 0.0250
B (GPa) 444 460 438 441 445 484 425
C11 (GPa) 1081 1100 1057 1079 1082 621 1067
C12 (GPa) 125 143 127 121 127 441 104
C44 (GPa) 579 587 480 490 635 393 636
C0

44 (GPa) 543 551 673 642 671

BC8 (Z = 4)

a (Å) 4.419 4.394 4.435 4.429 4.351 4.437
�Ec (eV) 0.693 0.495 0.503 0.722 0.446 0.775

SC (Z = 6)

a (Å) 1.744 1.825 1.733 1.783 1.744 1.802
�Ec (eV) 2.637 3.432 3.577 3.297 2.133 2.974

BCC (Z = 8)

a (Å) 2.326 2.297 2.308 2.160 2.093 2.152
�Ec (eV) 4.355 5.059 5.105 3.964 3.037 3.771

FCC (Z = 8)

a (Å) 3.021 2.953 2.905 2.859 2.863 2.728
�Ec (eV) 4.652 6.242 5.925 4.483 3.713 4.441

investigations done by Karch et al [36]. We found that both
lattice parameters and cohesive energies are overestimated, as
with other potentials. With EDIP and Tersoff potentials, the
equilibrium volume of the B1 phase is even larger than the
cubic structure, in clear contradiction with experiments. It
seems that this inability to describe high-pressure phases of
silicon carbide correctly is a feature shared by all classical
potentials.

2.5. Point defects

Initially, EDIP was developed in order to improve the
description of point and extended defects in silicon. It was
therefore important to preserve this feature as much as possible
in the new potential. Particular care has thus been taken during
the fitting procedure, and the formation energies of three lowest
energy point defects in silicon carbide have been included in
the fitting database.

2.5.1. Silicon. The properties of several point defects in
bulk silicon, i.e. the vacancy and two interstitial configurations
(〈110〉 dumbbell and hexagonal), have been investigated. Their
formation energies, as well as the activation energy associated
with the concerted exchange migration mechanism [39],
are reported in table 6. Considering density functional
theory calculations [40, 41] as the reference, a good

agreement is obtained for EDIP A and for the Erhart–Albe
potential. While the other potentials yield reasonable vacancy
formation energies, the interstitial formation energies are either
overestimated (SW, T89) or underestimated (EDIP B).

2.5.2. Carbon (diamond). The formation energies of point
defects in diamond obtained using various potentials have been
compared to DFT calculations of the vacancy [42] and of the
interstitials [43] (see table 7). Concerning the vacancy, EDIP
A and B potentials yield formation energies of 1.52 eV and
1.58 eV, respectively. These values are considerably lower than
the ab initio value, but it has not been possible to increase the
vacancy formation energy during the fit without deteriorating
the accuracy of the potential in other aspects. Other potentials
yield closer values, although still relatively different from the
DFT energy. It is likely that the formation of a vacancy induces
strong changes in the electronic structure, which are difficult
to reproduce with an empirical potential. Considering now
interstitials, the most stable configuration according to Breuer
et al is the split interstitial oriented along 〈100〉 (denoted IS in
this paper). A configuration with an interstitial centred on a
bond was calculated to be 4.05 eV higher in energy, whereas
an interstitial initially in a tetrahedral site relaxed into the
IS configuration. Our calculations indicate that IS was the
most stable state with both EDIP potentials, and that other

6
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Table 5. Structure and elastic properties of bulk silicon carbide. Results obtained using EDIP potentials are compared to
experiments [32, 33], DFT-LDA calculations [34–36] and empirical calculations using Erhart and Albe (EA05), Tersoff (T89) and Gao and
Weber (GW02) potentials [14]. Energies are given relative to the 3C-SiC phase.

Exp. DFT-LDA EDIP A EDIP B EA05 T89 GW02

3C-SiC

a (Å) 4.3596 4.344 4.411 4.364 4.359 4.321 4.360
Ec (eV) −6.340 −7.415 −6.359 −6.338 −6.340 −6.165 −6.412
B (GPa) 225 222 224 226 224 224 235
C11 (GPa) 390 390 437 394 382 437 254
C12 (GPa) 142 134 117 142 145 118 225
C44 (GPa) 256 253 195 168 240 311 66
C0

44 (GPa) 273 260 255 305

4H-SiC

a (Å) 3.073 3.119 3.085
c (Å) 10.053 10.186 10.074
B (GPa) 220 223 227
C11 (GPa) 501 536 521
C12 (GPa) 111 87 105
C13 (GPa) 52 54 62
C33 (GPa) 553 568 567
C44 (GPa) 163 194 170
�Ec (eV) −0.0024 0.000 0.000

6H-SiC

a (Å) 3.081 3.119 3.085
c (Å) 15.117 15.279 15.112
�Ec (eV) −0.0017 0.000 0.000

B1 (NaCl)

a (Å) 4.046 4.455 4.415 4.244 4.329
�Ec (eV) 0.7 2.06 1.26 1.92 1.49

B2 (CsCl)

a (Å) 2.631 2.761 2.729 2.668 2.640
�Ec (eV) 2.1 2.73 2.61 3.04 2.49

Table 6. Formation energies (in eV) of point defects and concerted
exchange (CE) migration energy in bulk silicon computed using
EDIP potentials. Results are compared to DFT calculations [40, 41]
and empirical calculations using Stillinger–Weber (SW), Tersoff
(T89) and Erhart–Albe (EA05) [14, 18] potentials.

DFT EDIP (A) EDIP B SW T89 EA05

V 3.17 3.22 2.98 2.82 3.70 3.2
I〈110〉 3.31 3.35 1.64 4.68 4.68 3.0
IH 3.31 4.16 2.06 6.95 4.61 4.0
CE 4.45–4.80 4.82 4.40 4.64

configurations convert to IS after relaxation, or end up with
a very high energy.

2.5.3. Silicon carbide. One of the main objectives of this
work was an improvement of the point defects description
in silicon carbide compared to existing classical potentials.
Here, we show the results obtained for the cubic phase. Due
to the similarity between local environments of cubic and
hexagonal phases, the general conclusions drawn here should
remain valid for the other common polytypes such as 4H and
6H phases. The formation energies for vacancies, antisites

Table 7. Formation energies (in eV) of several point defects in
diamond calculated with EDIP potentials. Results are compared to
DFT calculations [42, 43] and empirical calculations using Erhart
and Albe (EA05), Brenner (B90) and Tersoff (T89) potentials [14].
Interstitial formation energies are given relative to the split
interstitial IS.

DFT EDIP A EDIP B EA05 B90 T89

V 6.98 1.52 1.58 5.24 8.84 3.42
IS 0.00 0.00 0.00 0.00 0.00 0.00
IB 4.05 IS IS 5.85 3.79 4.53
IT IS IS 13.51 13.69 3.72 9.49

and many configurations of carbon and silicon interstitials,
calculated with DFT [44] (for defects in their neutral charge
state), and the various potentials are listed in table 8.

Considering first the vacancies, the formation energies
computed using both EDIP potentials are lower than DFT
values, but differences are smaller than in the case of carbon.
Similar trends are obtained for Erhart–Albe and Gao–Weber
potentials. With the Tersoff potential, the carbon vacancy
has a higher formation energy than the silicon vacancy, in
disagreement with DFT calculations. In the case of antisites,
a not perfect but nonetheless satisfactory behaviour is noted
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Table 8. Formation energies (in eV) of point defects in 3C-SiC
obtained with our EDIP potentials. Results are compared to DFT
calculations [44] and empirical calculations using Erhart and Albe
(EA05), Tersoff (T89) and Gao and Weber potentials [14].

DFT EDIP A EDIP B EA05 T89 GW02

Vacancies

VC 3.63 1.25 1.45 1.90 3.88 1.39
VSi 7.48 3.98 4.18 4.55 3.29 4.67

Antisites

CSi 3.48 3.01 2.40 2.42 2.20 4.43
SiC 4.02 2.83 2.74 2.48 4.50 5.05

Carbon interstitials

CTC CC〈100〉 12.15 CC〈100〉 12.63 7.21 6.02
CTSi CC〈100〉 8.57 6.40 9.38 4.40 5.69
CC〈100〉 6.31 5.42 4.82 4.78 6.50 4.41
CC〈110〉 6.65 CSi〈100〉 5.13 9.89 5.68 4.67
CSi〈100〉 6.94 6.05 4.67 8.31 7.69 4.80
CSi〈110〉 CC〈100〉 CC〈100〉 CC〈100〉 4.81 CC〈100〉 5.32

Silicon interstitials

SiTC 7.04 SiC〈100〉 SiC〈110〉 17.55 17.67 2.60
SiTSi 9.23 SiC〈100〉 SiC〈110〉 17.30 15.89 5.40
SiSi〈100〉 9.32 8.88 8.25 20.90 12.52 4.16
SiSi〈110〉 8.11 9.68 SiC〈110〉 12.11
SiC〈100〉 SiSi〈110〉 9.29 8.90 14.14 SiSi〈110〉 6.17
SiC〈110〉 SiTC 9.48 7.78 12.39

for all potentials, with formation energy differences of about
1–1.5 eV compared to DFT results for all potentials.

Calculations of carbon interstitials using EDIP potentials
lead to appropriate results. The most stable configurations are
found to be either CC〈100〉 or CSi〈100〉 dumbbell interstitials,
and all other dumbbell configurations are very close in energy.
Tetrahedral interstitials are also found to be significantly
higher in energy. With the Erhart–Albe potential, formation
energy differences between all dumbbell configurations are
significant, up to 5 eV between dumbbells with orientations
〈100〉 and 〈110〉. The Tersoff potential yields formation
energies of dumbbell interstitials close to the DFT results,
but the most stable configuration is the CTSi tetrahedral
configuration, which is found unstable with DFT. Finally, the
Gao–Weber potential provides a satisfactory description of
carbon interstitials.

The properties of silicon interstitials are very difficult to
reproduce with empirical potentials. DFT calculations showed
that the most stable configuration is the SiTC tetrahedral
interstitial, and that formation energies of stable configurations
range between 7 and 9.3 eV. Only the Gao–Weber potential
yields SiTC as the most stable interstitial configuration.
Unfortunately, the computed formation energy is rather low
compared to DFT results, and also much lower than the
calculated values for carbon interstitials. Conversely, both
Erhart–Albe and Tersoff potentials lead to very high formation
energy values, more than 10 eV with the former. With both
EDIP potentials, the SiTC tetrahedral interstitial is found to
be unstable, relaxing to SiC split interstitials. However, the
formation energies of all other interstitial configurations are

Table 9. Core energy differences (in eV/Burgers vector) for
dislocations in silicon, computed with EDIP potentials, and
compared to DFT calculations [45–48]. Several core configurations
have been considered for the screw dislocation (A for shuffle, B for
shuffle/glide, C1 for glide single period, C2 for glide double period),
the 60◦ dislocation (S for shuffle, G for glide), the 30◦ and the 90◦
partials (SP for single period, DP for double period). For each
dislocation, a configuration is chosen as the reference (zero energy).

EDIP A EDIP B LDA [45]
GGA
[46]

GGA
[47]

LDA
[48]

Screw (non-dissociated)

A 0 0 0 0 0
C2 −0.07 −0.06 −0.54
C1 0.77 0.86 0.86 0.62
B 0.22 1.07 Unstable Unstable

60◦ (non-dissociated)

S 0.61 0.55 0.52
G 0 0 0

30◦ (partial)

SP 0.33 0.37 0.52
DP 0 0 0

90◦ (partial)

SP −0.18 −0.09 0.05
DP 0 0 0

close to DFT results, and the average difference between
silicon and carbon interstitial formation energies is also in close
agreement with reference values.

Overall, the developed EDIP potentials allow for an
improved description of point defects in silicon carbide
compared to previous potentials. In particular, the formation
energies of interstitials are in good agreement with DFT
results. The only weak point is the instability of the SiTC

configuration. We have tried to bias the potential fit by
including the formation energy of this specific configuration
into the fitting database, but with no success.

2.6. Extended defects

Covalent systems are characterized by the diversity of the
possible structures for dislocation cores, which are usually
difficult to model using classical interatomic potentials. The
original EDIP has been shown to be one of the most accurate
potentials for modelling dislocations in silicon [45]. The
potential EDIP B has been tested on dislocation cores to
determine whether this property was conserved (table 9). In
addition, both A and B potentials have been used to compute
the properties of dislocations in diamond (table 10) and cubic
silicon carbide (table 11), for which very little reference
information is available.

2.6.1. Silicon. The structure and stability of screw, 60◦,
30◦ and 90◦ dislocation cores have been considered in this
work. All possible core geometries obtained are in good
agreement with previous investigations, except for the screw
core B which is found to be stable after relaxation using both
EDIP potentials, whereas it is unstable with first-principles
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computations. Nevertheless, this configuration has a high
energy, especially with EDIP B. The most stable core is the C2

configuration, in agreement with previous work [46]. However,
the energy difference between the configurations C2 and A, the
second lowest energy structure, is much smaller with EDIP.
The non-dissociated core of the 60◦ dislocation has also been
investigated. We found a very good agreement with previous
calculations, with very small energy differences between the
glide and shuffle configurations.

The most studied cores in silicon are the 30◦ and 90◦
partial dislocations. The energy gain due to the reconstruction
of the single period core into the double period core is
computed to be in the range 0.3–0.4 eV with both EDIP
potentials, in good agreement with first-principles results. The
structures of both cores are also well reproduced with the
potentials. The case of the 90◦ partial dislocation is more
tricky, since it has been shown that the two possible core
configurations, which exhibit a single (SP) or a double (DP)
period, were almost degenerate in energy [48]. Whether the
SP or DP core has the lowest energy should depend on the
environment in which the dislocation is located [49]. Here,
we found that the SP core is slightly favoured compared to the
DP core. The energy difference is very small, especially for
EDIP B, in very good agreement with previous calculations.

The original EDIP has been designed with the aim
of improving the description of extended defects. Our
calculations clearly show that this goal has been achieved.
More importantly, the new set of parameters (B) leads to an
even better description of dislocation cores in silicon.

2.6.2. Carbon (diamond). For dislocations, we have
considered the same core configurations as in silicon. It has
to be noted that much less information is available for carbon
than for silicon, either from experiments or first-principles
calculations. First, for the screw dislocation, we found that the
most stable configuration is the single-period glide core C1, in
agreement with previous first-principles calculations [4]. The
energy difference with other configurations is large, a feature
well reproduced by the EDIP potentials. To our knowledge,
the double-period glide core C2 has never been calculated in
diamond. Our calculations suggest that it is not favoured in
diamond, in contrast to silicon. Considering now the 60◦
dislocation, we found that the glide core is much more stable
than the shuffle core, with larger energy differences than in
silicon. The latter, computed with both EDIP potentials, are in
close agreement with previous tight-binding calculations [50].

The 30◦ and 90◦ partial dislocations have also been studied
with EDIP A and B potentials. Unlike in silicon, the single-
period core SP is largely favoured compared to the double-
period core DP in the case of the 30◦ partial dislocation.
This result requires confirmation from electronic structure
calculations. For the 90◦ partial dislocation, previous works
indicate that the most stable configuration is the DP core, with
an energy difference of the order of 0.4 eV with the SP core.
Instead, our calculations performed with EDIP B potential
show that the SP core is more stable than the DP core. With
EDIP A, only the DP core is stable. The parameter set A could
then be used for modelling 90◦ partials in diamond.

Table 10. Core energy differences (in eV/Burgers vector) for
dislocations in diamond, computed with EDIP potentials, and
compared to DFT [4, 51] and tight-binding [50] calculations. The
same core notation as in table 9 is used.

EDIP A EDIP B LDA [4] DFTB [50] LDA [51]

Screw (non-dissociated)

A 1.66 1.11 1.29
C2 1.34 1.05
C1 0 0 0
B 1.01 0.63 2.51

60◦ (non-dissociated)

S 1.16 0.97 1.18
G 0 0 0

30◦ (partial)

SP −1.25 −0.98
DP 0 0

90◦ (partial)

SP Unstable −0.48 0.35 0.3–0.5
DP 0 0 0 0

For dislocations in diamond, it is difficult to test the
accuracy of the potentials developed, due to the lack of
relevant data. Nevertheless, although non-dissociated perfect
dislocations are well described, a less satisfactory agreement is
noted in the case of the 90◦ partial dislocation.

2.6.3. Silicon carbide. Finally, we have investigated
the structure and stability of dislocation cores in silicon
carbide with the EDIP potential. Compared to the elemental
semiconductors previously considered, there are two possible
configurations for 60◦, 30◦ and 90◦, depending on whether
Si or C atoms are located in the core centre. Here we only
investigated the zinc blende phase, but the core structures of
dislocations located in the {111} planes of the cubic structure
and in the basal planes of hexagonal polytypes are equivalent.

Our calculations with both EDIP potentials indicate that
the most stable screw dislocation is the glide C1 core, with
small energy differences between A, C1 and C2 configurations.
This result is in qualitative agreement with first-principles
calculations since it has been previously shown that both A
and C1 could be the most stable core, depending on the choice
of the exchange–correlation functional [4, 47]. This feature
is not well reproduced by the Tersoff potential, which gives a
very large energy for the A core relative to the C1 core. With
EDIP potentials, C2 is found higher in energy than C1, but there
is no reference data to compare this result with. For the 60◦
dislocation, we found that, in the case of a carbon core, the
glide configuration is largely favoured over the shuffle core for
both parameter sets. For a silicon core, the glide configuration
is also found to be much lower in energy with potential B.
However, with potential A, the shuffle core becomes slightly
favoured in energy.

No information is available on the 30◦ partial dislocations.
Our EDIP calculations suggest that the single-period SP
configuration is more stable for a silicon core. However,
for a carbon core, potentials A and B yield different results:

9



J. Phys.: Condens. Matter 22 (2010) 035802 G Lucas et al

Table 11. Core energy differences (in eV/Burgers vector) for
dislocations in cubic silicon carbide, computed with EDIP potentials,
and compared to Tersoff, DFT [4, 47] and tight-binding [52]
calculations. The same core notation as in table 9 is used.

EDIP A EDIP B Tersoff
LDA
[4]

GGA
[47]

DFTB
[52]

Screw (non-dissociated)

A 0.14 0.19 2.33 −0.29 0.04
C2 0.21 0.15 0.27
C1 0 0 0 0 0
B Unstable 2.35 0.14

60◦ (non-dissociated)/Si core

S −0.2 1.39
G 0 0

60◦ (non-dissociated)/C core

S 1.51 1.36
G 0 0

30◦ (partial)/Si core

SP −0.64 −0.45
DP 0 0

30◦ (partial)/C core

SP −0.19 0.26
DP 0 0

90◦ (partial)/Si core

SP Unstable Unstable 0.3
DP 0 0 0

90◦ (partial)/C core

SP −0.04 0.03 0.3
DP 0 0 0

A favours the SP configuration whereas DP is more stable
with potential B. Finally, 90◦ partial dislocations have been
investigated and compared to tight-binding DFTB results [52].
The latter revealed that, for both Si and C cores, the DP
configuration is more stable, with an energy difference of
0.3 eV per Burgers vector compared to the SP configuration.
With both EDIP potentials, the DP configuration is found to
be stable, and with the correct geometry. In the case of an Si
core, the SP configuration is unstable. For a carbon core, the
SP core is stable and almost degenerate in energy with the DP
configuration.

In conclusion, we observed that the developed EDIP
potentials enable a good description of both the structure and
energetics of non-dissociated dislocations in silicon carbide.
For the partial dislocations, the agreement is less satisfactory,
although the most stable core configurations yielded by DFT
or tight-binding calculations are found to be stable with low
energies in both potentials.

2.7. Amorphous silicon carbide

The amorphous silicon carbide structure obtained with the
two EDIP potentials has been investigated using classical
molecular dynamics simulations at constant volume. The

Figure 1. Global radial distributions g(r) of amorphous SiC yielded
by (a) EDIP A potential, Tersoff potential and ab initio calculations,
(b) EDIP B potential and ab initio calculations.

results have been compared to results from the Tersoff potential
(T89) [10] and from ab initio molecular dynamics simulations
in the DFT framework done by Finocchi et al [53]. The time
step chosen was 0.7 fs. To obtain an amorphous sample a
supercell containing 4096 atoms was melted at 5000 K for
EDIP B and Tersoff potentials and at 5500 K for EDIP A
during 7 ps, then quenched to 300 K at three different cooling
rates: Tx = 1013, 1014 and 1015 K s−1. The system was then
maintained in equilibrium for 14 ps and the global and partial
radial distribution functions g(r) calculated over 7 additional
ps. The distribution functions were then averaged over 10
different amorphous samples and the graphs finally smoothed
using a central moving average.

Almost no difference is observed in the global g(r) and
the partial distributions yielded by the Tersoff potential at the
three quenching rates. Slightly larger differences are observed
between the various Tx for EDIP A. The relative intensities
of the various peaks depend on the quenching rate: when
Tx decreases the numbers of C–C and Si–Si bonds decrease
while the number of Si–C bonds increases, as expected from
equilibrium considerations. For EDIP B, only the second-
neighbour C–C–C peak is affected by the quenching rate: its
intensity decreases when Tx decreases.

In the following, we have chosen to analyse the amorphous
materials obtained for Tx = 1015 K s−1. It is the order of
magnitude of the quenching rate used in the ab initio molecular
dynamics calculations [54, 55] and we want the comparison
between the potential and DFT results to be as meaningful
as possible. We have represented in figure 1 the global g(r)
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yielded by EDIP A and B potentials, Tersoff potential and ab
initio calculations.

As can be seen in figure 1(a) the local environment of
the amorphous material yielded by the EDIP A and Tersoff
potentials are in very good agreement with the DFT results.
Differences appear mainly in the relative intensities of the first
two peaks: the C–C peak is less intense for the potentials than
in ab initio. Moreover, it can be seen that the description of
the medium-range order is slightly better for EDIP A than
for Tersoff. In contrast, significant differences are observed
between the g(r) obtained using EDIP B potential and the
ab initio results, as represented in figure 1(b): the C–C and
Si–Si peaks are significantly more intense than the Si–C one,
the Si–C peak is displaced and the medium-range order is
poorly described. In particular, there is a rather intense peak
at 2.4 Å, which does not exist in DFT. This shows that the
SiC amorphous structure is crudely described by the EDIP B
potential.

To go further into detail in the comparison of potentials
with ab initio, we have analysed the partial distributions
g(C–C), g(Si–C) and g(Si–Si). As can be seen from
figure 2(a), the g(C–C) partial distributions obtained using the
three potentials and DFT are relatively similar, although the
intensities of the peaks obtained using the EDIP B potential
are significantly more intense than for the other methods. A
first intense peak is observed at 1.50, 1.52, 1.49 and 1.50 Å
for EDIP A, EDIP B, Tersoff potentials and DFT, respectively.
These maxima can be compared with the equilibrium distances
in graphite and diamond, 1.42 and 1.54 Å, respectively. This
seems to indicate that the carbon atoms in amorphous SiC
are mainly hybridized sp3. The second peak has a smaller
maximum, occurring at 2.53, 2.62, 2.55 and 2.51 Å for EDIP
A, EDIP B, Tersoff potentials and DFT, respectively. This
distance is close to the second-neighbour distance in diamond
(2.51 Å). This peak therefore corresponds to C atoms in the C–
C–C configuration. A very faint third maximum (best defined
for the EDIP A potential and DFT) corresponding to C–Si–C
configurations can be seen around 3 Å. The C–C distributions
yielded by Tersoff and EDIP A are therefore in very good
agreement with the ab initio results. The EDIP B potential
slightly overestimates the C–C bond lengths and the peak
intensities, but the results are still in reasonable agreement.

The Si–Si partial distributions obtained using the various
methods show larger differences, as observed in figure 2(b).
The first-neighbour peak is at the same position: 2.37, 2.43,
2.41 and 2.32 Å for EDIP A, EDIP B, Tersoff potentials and
DFT, respectively, even if the intensities differ. For all three
potentials the Si–Si bonds are slightly elongated compared to
the bonds in silicon (d = 2.35 Å). A second peak is observed
at 2.86, 2.86, 3.04 and 2.97 Å for EDIP A, EDIP B, Tersoff
potentials and DFT, respectively. For all three potentials this
peak is more defined and intense than the first-neighbour peak,
especially for EDIP B, and g(Si–Si) comes to 0 between the
two peaks. These two features, which are probably due to
the potential cutoff functions, are responsible for a less than
satisfactory agreement between the potentials and DFT. The
number of Si–Si bonds, however, is rather small in amorphous
SiC, which explains its good overall description by EDIP A
and Tersoff.

Figure 2. Partial g(C–C), g(Si–C) and g(Si–Si) distribution
functions of amorphous SiC yielded by the EDIP A, EDIP B and
Tersoff potentials, as well as DFT calculations.

Finally, the g(Si–C) distributions obtained using Tersoff,
EDIP A and EDIP B potentials, as well as DFT, are represented
in figure 2(c). It can be seen that EDIP A and Tersoff
g(Si–C) are very similar and in good agreement with the DFT
results. They exhibit a first intense peak at 1.88 and 1.90 Å,
respectively, a smaller and broader second peak at 2.75 and
2.84 Å, and a very faint maximum around 3.4 Å. This must be
compared to the two peaks and the shoulder observed in DFT at
1.90, 2.81 and 3.4 Å. Moreover, the relative intensities of the
first two peaks yielded by the two potentials are very similar
to the ab initio results. The only slight difference is that the
second peak is better defined for Tersoff than for EDIP A and
DFT. The first peak is located at the first-neighbour distance
in β-SiC, while the second and third minima correspond to C–
C–Si and C–Si–Si configurations. For EDIP B, in contrast,
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Table 12. Partial coordination numbers and percentage of
homonuclear bonds yielded by the integration of the first peaks of the
g(C–C) and g(C − Si) radial distribution functions obtained using
EDIP potentials. Results are compared to the results of Tersoff (T89)
potential and DFT [53].

EDIP A EDIP B T89 DFT

nC–C 1.6 2.9 1.3 1.8
nC−Si 1.8 1.5 2.2 2.1
nC 3.4 4.4 3.5 3.9
%homo 45 66 37 46

two peaks with similar intensity and closer to each other are
observed at 1.98 and 2.36 Å, and there is no peak around
2.8 Å. The first peak corresponds to an elongated Si–C bond.
The origin of the second peak is more difficult to ascertain:
it could be Si–Si bonds constrained in a Si–C configuration.
This feature is certainly at the core of the poor description of
the silicon carbide amorphous structure yielded by EDIP B.

We have also determined the partial coordination numbers,
i.e. the average numbers of C–C and C–Si bonds formed
by C atoms yielded by the various potentials, by integrating
the first C–C and Si–C peaks of the g(C–C) and g(C − Si)
distributions. These partial coordinations, as well as the
proportion of homonuclear bonds formed by carbon atoms,
are shown in table 12. It can be seen that EDIP A describes
well the C coordination in the material, and slightly better
than the Tersoff potential. EDIP A yields undercoordinated
carbon atoms, in agreement with the ab initio results, and the
proportion of homonuclear C–C bonds is very close to the
proportion obtained in DFT. The proportion of Si–C bonds,
however, is slightly underestimated by EDIP A and is better
described by T89. The EDIP B potential, in contrast, yields
overcoordinated C atoms because of the excessive number of
C–C bonds formed.

In conclusion, the analysis of the total and partial radial
distribution functions, as well as the coordination numbers,
shows that the EDIP A potential yields an amorphous silicon
carbide with properties in very good agreement with the ab
initio results. It describes in particular the high proportion
of homonuclear bonds formed in this material. The EDIP
A potential is in this case slightly better than the Tersoff
potential. In contrast, EDIP B is not well suited for an accurate
description of the amorphous SiC structure.

3. Conclusion

We proposed a generalization of the semi-empirical inter-
atomic potential EDIP, initially designed for silicon [16, 18],
for modelling silicon carbide. A force and energy computing
routine is available, allowing for an easy integration into ex-
isting simulation codes [56]. Two parametrizations have been
obtained: the first is an extension of the original parameter set
and requires the introduction of an additional cutoff function
(set A). In the second one, all the parameters for Si–Si, C–C
and Si–C interactions are new (set B). These two potentials
have been tested for silicon, carbon (diamond) and silicon car-
bide for a wide range of properties, including bulk properties,

stability and structure of high-pressure crystalline phases, for-
mation energy and structure of point and extended defects, and
structure of amorphous phases. Our results have been com-
pared to data from the literature when available. Note that in
a few cases, especially for dislocations, our work also leads to
predictions.

We found that the two proposed potentials A and B enable
an accurate description of point and extended defects in silicon,
diamond and silicon carbide, thus preserving the initial focus of
the original EDIP potential. More specifically, an extra feature
of the parameter set B is the very good description of high-
pressure phases of the different materials. The potential with
the parameter set A is well suited for describing the disordered
structure of silicon carbide. Therefore, this potential would
be fully appropriate for modelling irradiation-induced effects
in silicon carbide, such as the generation of structural defects
and amorphization. It also has the advantage of keeping the
original EDIP parametrization for silicon.
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